(0) Obligation:
Clauses:
add(X, 0, X).
add(X, Y, s(Z)) :- ','(no(zero(Y)), ','(p(Y, P), add(X, P, Z))).
p(0, 0).
p(s(X), X).
zero(0).
no(X) :- ','(X, ','(!, failure(a))).
no(X).
failure(b).
Query: add(a,g,a)
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph ICLP10.
(2) Obligation:
Clauses:
addA(T5, 0, T5).
addA(T20, s(T36), s(T21)) :- addA(T20, T36, T21).
Query: addA(a,g,a)
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
addA_in: (f,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
addA_in_aga(T5, 0, T5) → addA_out_aga(T5, 0, T5)
addA_in_aga(T20, s(T36), s(T21)) → U1_aga(T20, T36, T21, addA_in_aga(T20, T36, T21))
U1_aga(T20, T36, T21, addA_out_aga(T20, T36, T21)) → addA_out_aga(T20, s(T36), s(T21))
The argument filtering Pi contains the following mapping:
addA_in_aga(
x1,
x2,
x3) =
addA_in_aga(
x2)
0 =
0
addA_out_aga(
x1,
x2,
x3) =
addA_out_aga
s(
x1) =
s(
x1)
U1_aga(
x1,
x2,
x3,
x4) =
U1_aga(
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
addA_in_aga(T5, 0, T5) → addA_out_aga(T5, 0, T5)
addA_in_aga(T20, s(T36), s(T21)) → U1_aga(T20, T36, T21, addA_in_aga(T20, T36, T21))
U1_aga(T20, T36, T21, addA_out_aga(T20, T36, T21)) → addA_out_aga(T20, s(T36), s(T21))
The argument filtering Pi contains the following mapping:
addA_in_aga(
x1,
x2,
x3) =
addA_in_aga(
x2)
0 =
0
addA_out_aga(
x1,
x2,
x3) =
addA_out_aga
s(
x1) =
s(
x1)
U1_aga(
x1,
x2,
x3,
x4) =
U1_aga(
x4)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
ADDA_IN_AGA(T20, s(T36), s(T21)) → U1_AGA(T20, T36, T21, addA_in_aga(T20, T36, T21))
ADDA_IN_AGA(T20, s(T36), s(T21)) → ADDA_IN_AGA(T20, T36, T21)
The TRS R consists of the following rules:
addA_in_aga(T5, 0, T5) → addA_out_aga(T5, 0, T5)
addA_in_aga(T20, s(T36), s(T21)) → U1_aga(T20, T36, T21, addA_in_aga(T20, T36, T21))
U1_aga(T20, T36, T21, addA_out_aga(T20, T36, T21)) → addA_out_aga(T20, s(T36), s(T21))
The argument filtering Pi contains the following mapping:
addA_in_aga(
x1,
x2,
x3) =
addA_in_aga(
x2)
0 =
0
addA_out_aga(
x1,
x2,
x3) =
addA_out_aga
s(
x1) =
s(
x1)
U1_aga(
x1,
x2,
x3,
x4) =
U1_aga(
x4)
ADDA_IN_AGA(
x1,
x2,
x3) =
ADDA_IN_AGA(
x2)
U1_AGA(
x1,
x2,
x3,
x4) =
U1_AGA(
x4)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADDA_IN_AGA(T20, s(T36), s(T21)) → U1_AGA(T20, T36, T21, addA_in_aga(T20, T36, T21))
ADDA_IN_AGA(T20, s(T36), s(T21)) → ADDA_IN_AGA(T20, T36, T21)
The TRS R consists of the following rules:
addA_in_aga(T5, 0, T5) → addA_out_aga(T5, 0, T5)
addA_in_aga(T20, s(T36), s(T21)) → U1_aga(T20, T36, T21, addA_in_aga(T20, T36, T21))
U1_aga(T20, T36, T21, addA_out_aga(T20, T36, T21)) → addA_out_aga(T20, s(T36), s(T21))
The argument filtering Pi contains the following mapping:
addA_in_aga(
x1,
x2,
x3) =
addA_in_aga(
x2)
0 =
0
addA_out_aga(
x1,
x2,
x3) =
addA_out_aga
s(
x1) =
s(
x1)
U1_aga(
x1,
x2,
x3,
x4) =
U1_aga(
x4)
ADDA_IN_AGA(
x1,
x2,
x3) =
ADDA_IN_AGA(
x2)
U1_AGA(
x1,
x2,
x3,
x4) =
U1_AGA(
x4)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADDA_IN_AGA(T20, s(T36), s(T21)) → ADDA_IN_AGA(T20, T36, T21)
The TRS R consists of the following rules:
addA_in_aga(T5, 0, T5) → addA_out_aga(T5, 0, T5)
addA_in_aga(T20, s(T36), s(T21)) → U1_aga(T20, T36, T21, addA_in_aga(T20, T36, T21))
U1_aga(T20, T36, T21, addA_out_aga(T20, T36, T21)) → addA_out_aga(T20, s(T36), s(T21))
The argument filtering Pi contains the following mapping:
addA_in_aga(
x1,
x2,
x3) =
addA_in_aga(
x2)
0 =
0
addA_out_aga(
x1,
x2,
x3) =
addA_out_aga
s(
x1) =
s(
x1)
U1_aga(
x1,
x2,
x3,
x4) =
U1_aga(
x4)
ADDA_IN_AGA(
x1,
x2,
x3) =
ADDA_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADDA_IN_AGA(T20, s(T36), s(T21)) → ADDA_IN_AGA(T20, T36, T21)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
ADDA_IN_AGA(
x1,
x2,
x3) =
ADDA_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADDA_IN_AGA(s(T36)) → ADDA_IN_AGA(T36)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ADDA_IN_AGA(s(T36)) → ADDA_IN_AGA(T36)
The graph contains the following edges 1 > 1
(14) YES